MAutoEqualizer

Overview

An equalizer is doubtless the most important audio processing tool. Unfortunately it is also one of the hardest to master too, with years of experience necessary in order to use it properly. MAutoEqualizer not only sounds great, it also greatly simplifies this task.

MAutoEqualizer is a revolutionary mastering plugin that can also be used for mixing and creative effects. It combines a powerful equalizer (including a state-of-the-art linear-phase version) and an analyser to achieve the first truly automatic equalization functionality. It is the first plugin to feature our **MeldaProduction Filter Adaptation (MFA) technology**, which can actually perform the equalization for you based on an analysis of your recording, another recording or indeed any spectral content that you can literally "draw" using our MeldaProduction Envelope System (MES).

Do not be mistaken, this has nothing to do with FFT. MAutoEqualizer is a parametric equalizer. The filter adaptation really configures the bands only. It does not suffer from distortion, transient smearing or other artifacts caused by simple FFT algorithms.

MAutoEqualizer provides an automatic equalization feature that lets you focus on what spectrum you want to get, not how to get it. With a standard equalizer you are listening to the whole spectrum while amplifying or attenuating frequencies. This is very difficult even for a very experienced user with advanced listening skills. With MAutoEqualizer you can make your recording sound like a commercial song. You no longer need to be worried if your ears aren't objective enough.

You can give your recordings a professional sound. And you can ensure that all of the recordings on your album sound uniform. Or you can draw your desired frequency response. MAutoEqualizer will work out how to do what you want and configure the parametric equalizer bands for you.

Introduction

The MAutoEqualizer package contains two plugins - the linear phase version (MAutoEqualizerLinearPhase) and the minimum phase version (MAutoEqualizer). The linear phase version implements three equalization algorithms - minimum phase, linear phase and FFT based linear phase. The disadvantage of the linear phase version is that it induces latency. *Please note that the response of the linear phase version in minimum phase mode is different from the response of the native minimum phase version.*

First look at the spectral analyser view. By default, the view is set to display the input and output levels: the moving **green line** displays the power of the output signal after processing and the moving **dark green line** shows the power of the incoming signal before processing.

The static **black or white line** defines the equalizer frequency response. You can use the band points or the controls in the **Bands** panel below to control the equalizer manually.

Automatic equalization

To make the plugin generate the equalizer settings for you, follow these steps:

1. Analyse your recording - start playback and press the Analyse target button. Most of the graphs in the spectral view will disappear and a **green line**, depicting a long term analysis, will be displayed. It will eventually stop moving, which usually means that the analysis is finished.

2. Get a source analysis - you can either load a predefined analysis using the Load button, or analyse another recording using the Analyse source button (by the same method used to analyse the target), draw the requested frequency response using the Draw button or even analyze an audio file using the File button.

3. Click the Equalize or Separate button and the plugin will adjust the bands.

You should notice the Smoothness parameter, which spreads the energy in the spectral view. It makes the analysis easier to understand visually, but it also affects the automatic equalization as well. A higher smoothness setting typically provides more natural results.

If you are having problems mixing in a particular track, you can also analyse your whole mix (without the problematic track) and let the plugin help fit the track into the mix, and make the mix clearer, less muddy. See Separate button for more information.

Presets

Presets

Presets button shows a window with all available presets. A preset can be loaded from the preset window by double-clicking on it, selecting via the buttons or by using your keyboard. You can also manage the directory structure, store new presets, replace existing ones etc. Presets are global, so a preset saved from one project, can easily be used in another. The arrow buttons next to the preset button can be used to switch between presets easily.

Holding **Ctrl** while pressing the button loads a random preset. There must be some presets for this feature to work of course.

Presets can be backed up by 3 different methods:

A) Using "Backup" and "Restore" buttons in each preset window, which produces a single archive of all presets on the computer.

- B) Using "Export/Import" buttons, which export a single folder of presets for one plugin.
- C) By saving the actual preset files, which are found in the following directories (not recommended):

Windows: C:\Users\{username}\AppData\Roaming\MeldaProduction

Mac OS X: /Library/Application support/MeldaProduction

Files are named based on the name of the plugin like this: "{pluginname}.presets", so for example MAutopan.presets or MDynamics.presets. If the directory cannot be found on your computer for some reason, you can just search for the particular file.

Please note that prior to version 16 a different format was used and the naming was "{pluginname}presets.xml". *The plugin also supports an online preset exchange. If the computer is connected to the internet, the plugin connects to our server once a week, submits your presets and downloads new ones if available. This feature is manually maintained in order to remove generally unusable presets, so it may take some time before any submitted presets become available. This feature relies on each user so we strongly advise that any submitted presets be named and organised in the same way as the factory presets, otherwise they will be removed.*

Left arrow

Left arrow button loads the previous preset.

Right arrow

Right arrow button loads the next preset.

Randomize

Randomize button loads a random preset.

Panic button resets the plugin state. You can use it to force the plugin to report latency to the host again and to avoid any audio problems. For example, some plugins, having a look-ahead feature, report the size of the look-ahead delay as latency, but it is inconvenient to do that every time the look-ahead changes as it usually causes the playback to stop. After you tweak the latency to the correct value, just click this button to sync the track in time with the others, minimizing phasing artifacts caused by the look-ahead delay mixing with undelayed audio signals in your host. It may also be necessary to restart playback in your host.

Another example is if some malfunctioning plugin generates extremely high values for the input of this plugin. A potential filter may start generating very high values as well and as a result the playback will stop. You can just click this button to reset the plugin and the playback will start again.

Settings button shows a menu with additional settings of the plugin. Here is a brief description of the separate items.

Licence manager lets you activate/deactivate the plugins and manage subscriptions. While you can simply drag & drop a licence file onto the plugin, in some cases there may be a faster way. For instance, you can enter your user account name and password and the plugin will do all the activating for you.

There are 4 groups of settings, each section has its own detailed help information: GUI & Style enables you to pick the GUI style for the plug-in and the main colours used for the background, the title bars of the windows and panels, the text and graphs area and the highlighting (used for enabled buttons, sliders, knobs etc).

Advanced settings configures several processing options for the plug-in.

Global system settings contains some settings for all MeldaProduction plugins. Once you change any of them, restart your DAW if needed, and it will affect all MeldaProduction plugins.

Dry/Wet affects determines, for Multiband pluq-ins, which multiband parameters are affected by the Global dry/wet control.

Smart interpolation adjusts the interpolation algorithm used when changing parameter values; the higher the setting the higher the audio quality and the lower the chance of zippering noise, but more CPU will be used.

WWW button shows a menu with additional information about the plugin. You can check for updates, get easy access to support, MeldaProduction web page, video tutorials, Facebook/Twitter/YouTube channels and more.

Sleep indicator

Sleep indicator informs whether the plugin is currently active or in sleep mode. The plugin can automatically switch itself off to save CPU, when there is no input signal and the plugin knows it cannot produce any signal on its own and it generally makes sense. You can disable this in Settings / Intelligent sleep on silence both for individual instances and globally for all plugins on the system.

Dry/Wet

Dry/Wet defines the ratio between dry and wet signals. 100% means fully processed, 0% means no processing at all.

Note that in the case of minimum-phase (not linear-phase) equalizers this is actually not technically possible, without going back in time. So the plugin simulates it by modifying the actual filters where possible. However the low-pass, high-pass, band-pass and notch filters cannot be simulated. These filters are left with 100% dry/wet unless the ratio is set to 0%, in which case the whole processing is bypassed. Range: 0.00% to 100.0%, default 100.0%

Shift lets you pitch shift all bands by specified number of semitones. It doesn't change the actual band points, but changes the resulting EQ shape appropriately.

Range: -24.00 to +24.00, default 0

Output gain defines output gain applied after the equalization. Range: -24.00 dB to +24.00 dB, default 0.00 dB

Soft saturation

Soft saturation defines amount of saturation simulating analog equalizers. Range: 0.00% to 100.0%, default 0.00%

Smoothness makes the analyzer smooth out the curve, so it contains less bumping up and down. It approximates the energy in each frequency and the resulting graph should be easier to understand. Also the smoothness affects the automatic equalization. Usually higher value provides more natural results, however you should verify using your ears. Range: 0.00% to 20.0%, default 5.0%

Averaging

Averaging

Averaging makes the analyser show mean values over a specified period of time, which makes the values "jump up and down" less and displays a more user-friendly value, which, of course, is not so accurate in the time-domain. Range: 0 ms to 5000 ms, default 300 ms

Mode

inear-phase

Mode controls the equalizer algorithm. The processor provides 3 different algorithms:

Normal is the standard minimum-phase algorithm as used in other MeldaProduction equalizers. It is provided so you can compare the linear-phase and minimum-phase algorithms on your particular material.

Linear-phase is the high-quality linear-phase algorithm, implemented using an improved bidirectional method, which usually provides the best audio quality.

Linear-phase FFT based mode uses the trivial FFT algorithm used in common linear-phase equalizers. Its main disadvantage is reduced accuracy for the low end of the audio spectrum.

Nonlinear gain

0.00%

Nonlinear gain

Nonlinear gain changes the way the band gain is interpreted. Normally the gain is assumed to be exactly as you set it. But in some cases, e.g. during mastering, you may focus on very small gains and that's exactly what this feature does. Range: 0.00% to 100.0%, default 0.00%

Equalizer shape graph

Equalizer shape graph controls and displays the frequency response. There are several bands available, each of them can be enabled/disabled, can be set to a different filter, can have different frequency, Q and other parameters.

Double-click on a band point to enable or disable a band. Drag it to change its frequency and gain. Drag the horizontal nodes to change its *Q*. Hold **ctrl** key for fine tuning. Click using the right mouse button on it to open a window with additional settings. Please note that the response for low-pass, high-pass, band-pass and notch filters differs from the minimum-phase equalizer plugins.

Areas

Areas

Areas button displays settings for the visual areas, which are useful for better visual orientation in the frequency spectrum. These areas are customisable guidelines displayed in the equalizer editor and may contain different octave bands or typical drum frequencies for example. Note that these areas are always only guides, so your particular snare drum may not fit exactly in the very well with the example. In that case it is highly advantageous to use the sonogram or analyzer. Or you can edit your own areas.

Auto-listen

Auto-listen

Auto-listen button enables the auto-listen feature, which temporarily changes the equalizer shape when dragging a band to let you see and hear what that particular band is actually doing. For example, when dragging a peak filter, the equalizer disables the other bands and changes this one to a band pass filter, so that you can focus on the frequencies that the peak filter is modifying.

Also, when this is enabled, you can click anywhere in the band's area (shaded) and the equalizer will let you listen to the frequencies at that position using a band-pass filter. This is great for searching for problematic frequencies for example. Vertical position controls the band-width. You can also hold **shift** to get this feature if auto-listen is not enabled.

Analyzer

Analyzer

Analyzer button enables or disables the spectrum analyzer, which shows the levels of individual frequencies. In most practical cases it is more convenient to use the sonogram, which shows the frequencies in time, but provides a lower level resolution as the levels are differentiated by color. The spectrum analyzer also provides a micro-sonogram (shown in the bottom of the panel) which uses the same color-based view as the sonogram.

Fill button enables or disables the full-sized analyzer micro-sonogram. This means that the micro-sonogram at the bottom of the equalizer graph will fill the whole analyzer view. Color differentiation is often easier to understand than the classical spectrum analyzer, so this might help you better understand the spectrum of your audio material.

An alternative is to use the spectrum sonogram.

Analyzer Rainbow Colors

Analyzer Rainbow Colors lets you see the analyzed sound spectrum in beautiful colors, following the same style as visible light. It ranges

from infra-red colors for the lowest frequencies to ultra-violet colors for the highest frequencies in the analyzed audio. If rainbow colors are disabled, the analyzer and graph will be single-colored, following the setup from Settings/Graphs.

Sonogram

Sonogram

Sonogram button enables or disables the spectrum sonogram, which shows levels of individual frequencies in time. Levels are differentiated by color, so the accuracy is not as good as when using the spectrum analyzer. However, the time axis improves the visual orientation in the spectrum for typical audio signals. In contrast, the spectrum analyzer is more of a scientific tool.

Settings

Settings button shows the settings of the spectrum analyzer and the spectrum sonogram.

Pause button stops the analyzer temporarily.

➡ Normalize

Normalize button enables or disables the visual normalization, which makes the loudest frequency be displayed at the top of the analyser area (0dB); it does not normalise the sound. This is very useful for comparing frequency levels, however it does hide the actual level. When comparing 2 spectrums you are usually interested mainly in the frequency level differences. In most cases both audio materials will have different overall levels, which would mean that one of the graphs would be "lower" than the other, making the comparison quite difficult. Normalize fixes this and makes the most prominent frequencies of the spectrum reach the top of the analyzer area (or have the most highlighted color in case of sonogram).

ට Reset

Reset button resets analyzer graphs. This is particularly useful when analyzing infinite average and maximum values.

Copy analysis

Paste

Copy analysis button copies the current state of the analysis into the system clipboard so that you can paste it into another analyzer for comparison. Hold **ctrl** to export the analysis into a CSV file.

Ľ>

Paste button pastes the analysis from the system clipboard and displays it as the comparison in the graph.

Band settings window contains settings for the particular band and can be displayed by right-clicking on a band or from a band list (if provided). On the left side you can see list of available filters, click on one to select it. On the right side, additional options and features are available.

....

Presets

Presets button displays a window where you can load and manage available presets. Hold **Ctrl** when clicking to load a random preset instead.

Left arrow

Left arrow button loads the previous preset.

Right arrow

Randomize

Right arrow button loads the next preset.

Randomize button loads a random preset.

ŗ

Copy button copies the settings onto the system clipboard.

Paste

Paste button loads the settings from the system clipboard.

Random

Random button generates random settings using the existing presets.

General panel contains standard filter settings such as frequency or Q. Most of these values are available directly from the band graph, but it may be necessary to use these controls for more accurate or textual access.

Invert gain Invert gain

Invert gain inverts the gain of the band, e.g. makes -6dB from +6dB.

Frequency

Frequency defines the band's central frequency, which has different meaning depending of filter type.

Q Q defines bandwidth. Please note that Q is an engineering term and the higher it is, the lower the bandwidth. Our implementation is trying to be more user-friendly, and by increasing the value (thus to the right), the bandwidth is increased as well. The editor still displays the Q value correctly.

Gain defines how the particular frequencies are amplified or attenuated. This parameter is used only by peak and shelf filters.

 Slope
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 Slope

 Slope can potentially duplicate some of the filters creating steeper ones. By default, the slope is 1 and this usually means 2-pole
 12
 dB (actave filters are the actual steeper ones. By default, the slope is 1 and this usually means 2-pole

 12 dB/octave filters. By specifying 2 you can make the plugin uses 4-pole 24 dB/octave filters instead etc. To see the actual slope of each filter look into the filter type list on the left.

 Channels
 Left
 Left + Right
 Right
 Channels

Channels controls which channels the band processes. If the input is stereo (left and right channels, L+R, selected on the toolbar **Channel mode** button), then you can make a band process only the left, only the right, or both channels. Similarly when the plugin is set to M/S channel mode, you can choose between mid, side or both channels.

When one of more bands are set to process a single channel, then 2 EQ curves are displayed, in red for the Left or Mid and in green for the Right or Side. If these are not distinct, then we recommend using a style with a light background for these graphs.

You cannot process left with one band and side with the other, because these are working in different encoding modes. In this case you can easily use 2 instances of the plugin in series, one in L/R mode and the other in M/S.

Harmonics panel contains parameters of the harmonics - clones of the main band created at higher frequencies derived from the frequency of the main band. This is often useful for removing natural noises, which usually bring some harmonics with them etc.

Linear Linear

Linear button enables the linear harmonics spacing. When the main band frequency is say 100Hz and the **Semitones** value is 12, then in the default logarithmic mode the harmonics are 200Hz, 400Hz, 800Hz etc., increasing by 12 semitones (1 octave) each time. This is suitable because the filters themselves are logarithmic.

However harmonics generated by physical instruments are not spaced in this way. Rather, for a **Semitones** value of 12, they increase by a multiple of 12/12 of the main frequency each time. For example, for a base frequency of 100Hz, they will be at 200Hz, 300Hz, 400Hz, 500Hz etc. In linear mode the harmonics work in this way, but please note that then there is only a limited set of harmonics and Q is modified to approximate a reasonable behaviour, which is not always possible.

Harmonics

Harmonics defines the gain of the created harmonics. With maximum value (+/-100%), all harmonics will have the same gain as the main band. A lower value makes the higher harmonics have lower gain. A negative depth will make alternate harmonics have positive and negative gains and is particularly useful for creative effects.

SEMITONES

MAXIMAL COUNT

Semitones

Semitones defines the frequency interval of the harmonics. For example, if the band is at 100Hz and the number of semitones is 12 (default), then the first harmonic will be at 200Hz (12 semitones higher), second at 400Hz etc., increasing by 12 semitones (1 octave) each time. Thus they are logarithmically-spaced harmonics. When linearly-spaced harmonics are enabled, this merely changes the ratio between them. In this mode, 100Hz is followed by 200Hz, 300Hz, 400Hz, 500Hz etc, that is, increasing by a multiple of 12/12 of the main frequency each time.

For a value of 7 (a perfect fifth), the logarithmic harmonics would be at 150Hz, 225Hz, 337.5Hz, 506.25Hz etc, increasing by 7 semitones (= 50%, as 1.05946 7 = 1.498) each time and the linear harmonics would be at 158Hz, 251Hz, 397Hz, 628Hz etc, increasing by 7/12 each time.

Maximal count

Maximal count defines the maximum number of harmonics that could be created. The harmonics that are created depends on them being activated in the **Harmonics grid**.

Harmonics grid is useful to turn on/off particular harmonics manually. Click any one to enable / disable it.

Bands panel

Bands panel contains the list of available bands along with their basic parameters. You can use it to enable/disable a band, change the parameters and show the band settings window if you do not wish to edit the bands within the equalizer graph panel or if you need to set some values by numeric text entry. The panel is collapsed by default, as it can take a lot of space.

Reset Reset

Reset button restores the original equalizer settings.

Invert Invert

Invert button inverts the gains of all bands.

Band graphs Band graphs

Band graphs button enables/disables display of band graphs.

Automatic equalizer panel

Automatic equalizer panel contains long-term analysis and automatic equalization functions.

Analyze source

Analyze source button starts or stops the source analysis, source defines how you want your audio to sound. In your host, route the source audio only to the plug-in and start playback, then press this button to start the analysis. When the graph (shown as a **red line**) stops moving the analysis is finished and you can press the button again to complete the process.

Alternatively, you can analyze an audio file (WAV, MP3, FLAC etc.) offline by clicking the **File** button and browsing to the file or by dragging & dropping the file from your host or Explorer / Finder onto the **Analyze source** button (this latter method may not work in all hosts, especially on Mac). Three other 3 buttons let you save and load an analysis or even draw the desired response manually.

Analyze target

Analyze target button starts or stops the target analysis, target refers to the audio that you want to process. In your host, route the target audio only to the plug-in and start playback, then press this button to start the analysis. When the graph (shown as a **green line**) stops moving the analysis is finished and you can press the button again to complete the process.

Alternatively, you can analyze an audio file (WAV, MP3, FLAC etc.) offline by dragging & dropping the file from your host or Explorer / Finder onto the **Analyze target** button (this may not work in all hosts, especially on Mac).

This tip may come in handy - instead of playing the whole song back to get an accurate analysis you can render the song and analyse the output file, which will probably be faster.

Equalize

Equalize button performs automatic equalization - it adjusts the bands to match the source and target analyses as closely as possible. To do that, you need to have the analyses of both the source and target audio first. When you have both analyses ready, you will see the

red (source) and green (target) analyses in the graph area and this button becomes available.

First get the source analysis using the **Analyse source** button. The Source is the reference audio material that you want your track to sound like.

This is most likely a different track, so you have several options to get this analysis. You can move the plugin to the reference track, perform the analysis then move the plugin onto the track you want to process. Or, open another instance of the plugin on the reference track, perform the analysis and copy the analysis (using the copy/paste buttons, below the A-H preset selectors and A|B comparison button) to the plugin on your track. Or, by saving and loading the analysis (using the **Save** and **Load** buttons). Alternatively, you can draw the desired spectrum or analyse an WAV/MP3/FLAC file by dragging & dropping the file onto the **Analyze source** button.

Secondly, use Analyse target button to analyse the audio that you are processing (the green line in the graph).

Finally press the **Equalize** button to perform the equalization.

Automatic equalizer tries to match the spectral content of the source analysis graph to the target analysis, producing an equalization curve that aims to make the target audio sound tonally more like the source audio. In most cases the result will be too strong so it is worth considering lowering the **Dry/Wet** parameter to say 30-40% to get a more natural output. You can also make use of the **Smoothness** parameter, above the graph area. Increasing the smoothness before pressing **Equalize** will create a less-pronounced equalization curve.

Separate

Separate button performs automatic separation - adjusting the bands so that the target does not contain those frequencies that are prominent in the source. This is useful, for example, during mixing to avoid collisions between multiple tracks. To do that, you need to have analyses of both the source and target audio first. When you have both analyses ready, you will see **red** (source) and **green** (target) analyses and this button becomes available.

For example, say you want to avoid collisions between bass and bass drum. One of them will have to be sacrificed and processed by the equalizer, let's choose the bass. In that case you would analyse the bass drum as the source (the **red** line) and put the equalizer into the bass track afterwards and analyse that as the target (the **green** line). **Separate** would then produce an equalization curve that reduces, in the bass track, those frequencies that are prominent in the bass drum track.

Another example is typical when your mix is already busy, but you need to put one more track to it. In this case you analyse the whole mix as the source and your new track as the target. The separation will then allow only those frequencies from your new track that are not prominent in the whole mix; in other words, frequencies that are already prominent in the mix are not affected by those same frequencies in the new track. If this separation were not done, then those frequencies would start colliding with the rest of your mix and that could make it sound muddy and crowded.

When you have both analyses ready, click this button to perform the separation. In most cases the result will be too strong so it is worth considering lowering the **Dry/Wet** parameter to say 30-40% to get more natural output. You can also make use of the **Smoothness** parameter, above the graph area. Increasing the smoothness before pressing **Equalize** will create a less-pronounced equalization curve.

Reset

Reset

Reset button clears both the source and target analyses.

💣 Remove resonances

Remove resonances

Remove resonances button takes the target analysis, tracks peaks in it and creates notch filters to remove them. It is especially useful with various audio materials, such as drums, where resonances of the instruments are too prominent. You simply analyze the part of the audio material, where the resonances are mostly audible, and click this button. Then you can just disable the bands that remove the frequencies that you actually want to keep. It may also be worth trying to play with the Q values of each band to make sure the resonances are completely gone.

Swap source and target

Swap source and target

Swap source and target button swaps the analyses of source and target and can be helpful when you want to try equalizing 'the other way around'.

🔑 Settings

Settings

Settings button shows additional settings of the automatic equalizer algorithm.

Auto-equalizer settings

Auto-equalizer settings provides additional settings for the automatic equalization algorithm.

BOTTOM FREQUENCY

Bottom frequency

Bottom frequency defines lowest frequency taken into account when performing automatic equalization. Use it to avoid unnecessary processing of the bottom-end.

Top frequency

Top frequency defines highest frequency taken into account when performing automatic equalization. Use it to avoid unnecessary processing of the high-end.

MAXIMUM BANDS

Maximum bands

Maximum bands defines maximal number of bands that will be configured during the automatic equalization. Generally more bands provide more accurate match to the source analysis, however this may not always be desired. You can also make use of the **Smoothness** parameter, above the graph area. Increasing the smoothness before pressing **Equalize** will create a less-pronounced equalization curve.

SPACE IN MIX LIMIT

Space in mix limit

Space in mix limit controls the minimal level below which a particular frequency is considered silent. It is used for the **Separate** feature to determine which frequencies in the source (full mix for example) are candidates for separation and which are not.

For example, if this value is -20dB and the level of the frequency 1000Hz in the source analysis is -20dB, then the separation engine will consider 1000Hz to be "available" in the target audio and will not try to remove this frequency from the target. However if the level in the source were -10dB, then the engine would consider this frequency 50% occupied and may try to use a filter to remove some of the 1000Hz from the target if it contains this frequency as well.

In other words, frequencies in the source with levels louder than the mix limit will be those that would be reduced in the target.

Algorithm

Algorithm

Algorithm selector lets you choose which method is used to convert the frequency response into a configuration of the equalizer bands. (This algorithm itself is actually very complex and requires lots of CPU when adjusting the bands during the equalization/separation processes.) Multiple algorithms are available, each of them with a slightly different output.

Default provides the most accurate results, but it takes lots of CPU. Note, as mentioned above, that this CPU usage is required only for the pre-computing, the actual audio processing requirements are the same for all algorithms.

Optimized algorithm is much faster, however it can produce slightly less accurate results. It may be more suitable because it smoothes out the peaks in the frequency response.

Super-fast mode is the fastest of all of them, but it trades speed for accuracy in its results. You may find it useful in specific cases.

Never amplify Never amplify

Never amplify ensures that the automatic equalization only attenuates frequencies so that no amplification occurs. This may be desired, since amplification often increases noise level. On the other hand, due to its nature, it will probably lower the output level. It may be worth considering using AGC to set the output gain afterwards.

Disable pass/notch Disable pass/notch

Disable pass/notch makes automatic equalization use only peak and shelf filters. This way you can use the **Dry/Wet** parameter even in the non-linear-phase mode, because peak and shelf filters can be affected by the ratio in this mode too.

Use peak filters for resonance removal Use peak filters for resonance removal

Use peak filters for resonance removal option makes the **Remove resonances** feature use peak filters instead of the default notch filters, which are more effective, but **Dry/Wet** doesn't affect them.

Transformation

Transformation changes the requested frequency response. The engine first determines the optimum frequency response (the algorithms for equalization and separation are different). Then it computes the optimal response of the equalizer. Before it approximates this response using the equalizer filters, that response can be transformed. The transformation graph shows the original requested response on the X-axis and the new one on the Y-axis. For example you can exaggerate or sharpen the results just using the single point curvature.

Presets

Presets button displays a window where you can load and manage available presets. Hold Ctrl when clicking to load a random preset instead.

.eft arrow

Left arrow button loads the previous preset.

Right arrow Right arrow button loads the next preset.

Randomize

Randomize button loads a random preset.

Envelope graph

Envelope graph provides an extremely advanced way to edit any kind of shape that you can imagine. An envelope has a potentially unlimited number of points, connected by several types of curves with adjustable curvature (drag the dot in the middle of each arc) and the surroundings of each point can also be automatically smoothed using the smoothness (horizontal pull rod) control. You can also literally draw the shape in drawing mode (available via the main context menu).

• Left mouse button can be used to select points. If there is a *point*, you can move it (or the entire selection) by dragging it. If there is a curvature circle, you can set up its tension by dragging it. If there is a line, you can drag both edge points of it. If there is a smoothing controller, you can drag its size. Hold Shift to drag more precisely. Hold Ctrl to create a new point and to remove any points above or below.

• Left mouse button double click can be used to create a new point. If there is a point, it will be removed instead. If there is a curvature circle, zero tension will be set. If there is a smoothing controller, zero size will be set.

• Right mouse button shows a context menu relevant to the object under the cursor or to the entire selection. Hold Ctrl to create or remove any points above or below.

- Middle mouse button drag creates a new point and removes any points above or below. It is the same as holding Ctrl and dragging using left mouse button.
- Mouse wheel over a point modifies its smoothing controller. If no point is selected, then all points are modified.
- Ctrl+A selects all points. Delete deletes all selected points.

Global meter view

Global meter view provides a powerful metering system. If you do not see it in the plug-in, click the **Meters** or **Meters & Utilities** button to the right of the main controls. The display can work as either a classical level indicator or, in time graph mode, show one or more values in time. Use the first button to the left of the display to switch between the 2 modes and to control additional settings, including pause, disable and pop up the display into a floating window. The meter always shows the actual channels being processed, thus in M/S mode, it shows mid and side channels.

In the classical level indicators mode each of the meters also shows the recent maximum value. Click on any one of these values boxes to reset them all.

In meter indicates the total input level. The input meter shows the audio level before any specific processing (except potential oversampling and other pre-processing). It is always recommended to keep the input level under 0dB. You may need to adjust the previous processing plugins, track levels or gain stages to ensure that it is achieved.

As the levels approach 0dB, that part of the meters is displayed with red bars. And recent peak levels are indicated by single bars.

Out meter indicates the total output level. The output meter is the last item in the processing chain (except potential downsampling and other post-processing). It is always recommended to keep the output under 0dB.

As the levels approach 0dB, that part of the meters is displayed with red bars. And recent peak levels are indicated by single bars.

Width meter shows the stereo width at the output stage. This meter requires at least 2 channels and therefore does not work in mono mode. Stereo width meter basically shows the difference between the mid and side channels.

When the value is **0%**, the output is monophonic. From 0% to 66% there is a green range, where most audio materials should remain. **From 66% to 100%** the audio is very stereophonic and the phase coherence may start causing problems. This range is colored blue. You may still want to use this range for wide materials, such as background pads. It is pretty common for mastered tracks to lie on the edge of green and blue zones.

Above 100% the side signal exceeds the mid signal, therefore it is too monophonic or the signal is out of phase. This is marked using red color. In this case you should consider rotating the phase of the left or right channels or lowering the side signal, otherwise the audio will be highly mono-incompatible and can cause fatigue even when played back in stereo.

For most audio sources the width is fluctuating quickly, so the meter shows a 400ms average. It also shows the temporary maximum above it as a single coloured bar.

If you right click on the meter, you can enable/disable loudness pre-filtering, which uses EBU standard filters to simulate human perception. This may be useful to get a more realistic idea about stereo width. However, since humans perceive the bass spectrum as lower than the treble, this may hide phase problems in that bass spectrum.

Time graph

Time graph button switches between the metering view and the time-graphs. The metering view provides an immediate view of the current values including a text representation. The time-graphs provide the same information over a period of time. Since different time-graphs often need different units, only the most important units are provided.

II Pause

Pause button pauses the processing.

Popup

Popup button shows a pop-up window and moves the whole metering / time-graph system into it. This is especially useful in cases where you cannot enlarge the meters within the main window or such a task is too complicated. The pop-up window can be arbitrarily resized. In metering mode it is useful for easier reading from a distance for example. In time-graph mode it is useful for getting higher accuracy and a longer time perspective.

Enable

Enable button enables or disables the metering system. You can disable it to save system resources.

Collapse

Collapse button minimizes or enlarges the panel to release space for other editors.

Utilities

Мар Мар

Map button displays all current mappings of modulators, multiparameters and MIDI (whichever subsystems the plugin provides).

1:	50.0%	Ξ
----	-------	---

Multiparameter

Multiparameter button displays settings of the multiparameter. The multiparameter value can be adjusted by dragging it or by pressing Shift and clicking it to enter a new value from the virtual keyboard or from your computer keyboard.

Click on the button using your left mouse button to open the **Multiparameter** window where all the details of the multiparameter can be set. Click on it using your right mouse button or click on the **menu button** to the right to display an additional menu with learning capabilities - as described below.

Ξ

Menu

Menu button shows the **smart learn** menu. You can also use the right mouse button anywhere on the multiparameter button.

Learn attaches any parameters, including ranges. Click this, then move any parameters through the ranges that you want and click the multiparameter button again to finish. While learning is active, "REC" is displayed on the multiparameter button and learning mode is ended by clicking the button again.

Clear & Learn clears any parameters currently in the list then attaches any parameters, including ranges. Click this, then move any parameters through the ranges that you want and click the multiparameter button again to finish. While learning is active, "REC" is displayed on the multiparameter button and learning mode is ended by clicking the button again.

Reset resets all multiparameter settings to defaults.

Quick Learn clears any parameters currently in the list, attaches one parameter, including its range and assigns its name to the multiparameter. Click this, then move one parameter through the range that you want.

Attach MIDI Controller opens the MIDI Settings window, selects a unused parameter and activates MIDI learn. Click this then move the MIDI controller that you want to assign.

Reorder to ... lets you change the order of the multiparameters. This can be useful when creating active-presets. Please note that this feature can cause problems when one multiparameter controls other multiparameters, as these associations will not be preserved and they will need to be rebuilt.

In learning mode the multiparameter does not operate but rather records your actions. You can still adjust every automatable parameter and use it normally. When you change a parameter, the plugin associates that parameter with the multiparameter and also records the range of values that you set.

For example, to associate a frequency slider and make a multiparameter control it from 100Hz to 1KHz, just enable the smart learn mode, click the slider then move it from 100Hz to 1KHz (you can also edit the range later in the Multiparameter window too). Then disable the learning mode by clicking on the button.

Lock button displays the settings of the global parameter lock. Click on it using your left mouse button to open the Global Parameter Lock window, listing all those parameters that are currently able to be locked.

Click on it using your right mouse button or use the **menu button** to display the menu with learning capabilities - **Learn** activates the learning mode, **Clear & Learn** deletes all currently-lockable parameters and then activates the learning mode. After that, every parameter you touch will be added to the lock. Learning mode is ended by clicking the button again. The On/Off button built into the Lock button enables or disables the active locks.

Collapse button minimizes or enlarges the panel to release space for other editors.